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Magnetic resonance angiography (MRA) methods assess the body’s arteries and veins for 
indications of disease. MRA is most typically associated with imaging the lumen of 
arteries.  In most anatomic regions, X-ray angiography (DSA) is the clinical gold 
standard due to its high temporal and spatial resolution.  However, MR angiography has 
several advantages.  MRA methods typically are either non-invasive or require a venous 
injection of contrast agents without the use of invasive catheters.  DSA typically utilizes 
an arterial injection that is accompanied by a higher level of risk.  MRA methods also 
normally acquire volumetric data that allows retrospective selection of the optimal 
viewing angle.  DSA typically acquires projections at a few angles and is inherently a 2D 
method.  Finally, MR angiograms are naturally spatially registered to the other MR 
acquisitions completed in the same exam that can provide further anatomic information 
and clinical insight. 
 
MR angiography methods can be divided into three main categories:  time-of-flight 
(including 2D TOF, 3D TOF, and MOTSA), phase contrast, and contrast-enhanced 
methods.  
 
Time of Flight 
Time-of-flight (TOF) methods rely on effects related to the longitudinal magnetization of 
spins and capitalize on the fact that flowing spins and stationary spins experience a 
different RF excitation history.  For example, if spins in a vessel are flowing through a 
slice, fresh spins (that were not excited by the previous RF pulse) may replace some or all 
of the excited spins before the next excitation.  Stationary spins that are excited by every 
RF pulse are in “steady-state” and produce less signal than flowing spins that see only 
one or several RF excitations.  This is the “in-flow” effect that TOF methods utilize to 
generate angiographic contrast. 
 

To maximize the contrast generated by in-flow, TOF methods typically utilize a gradient-
echo acquisition with a TR that is much shorter than the T1 of blood and other 
surrounding tissues.  The optimal flip angle depends on the degree of spin replacement 
each TR.  A higher percentage of spins are replaced with higher velocity and/or thinner 
excited volume.  Flow direction also influences the percentage of spin replacement, with 
through-slice vessels having more spin replacement than vessels that flow within the 
plane of the slice.  A higher flip angle can be used when there is a higher percentage of 
spin replacement. 
 
TOF methods normally acquire volumetric data, either through the acquisition of a stack 
of two-dimensional slices (2D TOF), by a acquiring a 3D volume (3D TOF), or by using 
MOTSA (multiple overlapping thin slab acquisition). 
 



In 2D TOF, a stack of slices is prescribed perpendicular to the main flow direction.  For 
example, a stack of axial slices can be used to image the carotid arteries.  The use of thin 
slices maximizes the in-flow enhancement effect.  The minimum slice thickness used in 
2D TOF is limited by RF pulse design constraints, the desired TE, and SNR (since SNR 
scales proportionally to slice thickness). 
 
3D TOF acquires a single 3D volume.  As a result, thinner “slices”, shorter TE, and 
smaller in-plane voxels are possible compared to 2D TOF.  In addition, the SNR of the 
angiogram is directly proportional to the square root of the total scan time.  The tradeoffs 
of 3D TOF compared to 2D TOF include increased saturation of blood on the more distal 
edge of the slab.  This can result in more distal vessels being less well visualized. 
 
In MOTSA (multiple overlapping thin-slab acquisition), thin 3D slabs are prescribed 
perpendicular to the main flow direction.  Within each slab, it is possible to prescribe thin 
“slices”.    MOTSA is an attractive compromise between 2D TOF and 3D TOF in terms 
of SNR and saturation effects.  The one additional complication with MOTSA is the 
“Venetian blind” or slab boundary artifacts that can result from vessel signal being 
brighter at the proximal edge of each slab relative to the distal side where blood spins 
have experienced more RF excitations.  Ramped excitations or TONE (tilted optimized 
non-saturating excitation) pulses can be used to lessen this effect.  The excitation profile 
of these pulses is generated so that the flip angle is reduced at the in-flow edge of the 
volume and is progressively increased in the through-slab direction to compensate for 
signal losses due to saturation. 
 
Time-of-flight methods can selectively image arteries or veins by using spatial saturation 
pulses that excite either superior to or inferior to the imaged volume.  These spatially-
selective pulses “saturate” the flowing spins before they enter the imaging volume and 
drastically reduce the in-flow enhancement for vessels where spins “up-stream” are 
affected by the saturation pulses.  These saturation pulses are most effective with 2D 
TOF and least effective with 3D TOF, with MOTSA falling between these two extremes. 
 
In certain applications of TOF techniques, for example in imaging the intracranial arteries 
with 3D TOF, magnetization transfer (MT) can be used to improve suppression of 
background tissue and hence improve visualization of small distal vessels.  Magnetization 
transfer methods utilize extra RF pulses to provide additional suppression of certain 
tissues.  For example, white matter and muscle are both sensitive to MT effects. 
 
Because TOF methods depend on effects related the longitudinal magnetization, the 
increased T1 relaxation times at higher field strengths can offer advantages in SNR and 
CNR. 
 
There are several potential sources of artifact with TOF imaging including the saturation 
of in-plane flow, intra-voxel flow dephasing, and motion artifacts related to pulsatility or 
bulk patient motion.   
 



In-Plane Flow:  Because TOF methods rely on in-flow enhancement, vessels that flow in-
plane in the excited volume can appear artifactually dark relative to blood that flows 
through-plane and experiences more in-flow enhancement.  The saturation of in-plane 
flow can result in artifactual loss of blood signal that is difficult to distinguish from 
vessel stenosis or occlusion.  
 
Intravoxel Flow Dephasing:  In MR imaging, the signal from a given image voxel is the 
vector sum of all spins within that tissue volume.  If there is a range of blood flow 
velocities within a voxel, the magnetization from different spins in the voxel can acquire 
very different phase.  The signals from these spins can add destructively and result in 
very low signal or “flow voids”.  Again, this artifactual loss of blood signal can be 
difficult to distinguish from true vessel stenosis or occlusion.  Reducing the imaging echo 
time, or TE, can reduce the opportunity for flow-related signal dephasing. 
 
Motion Artifacts:  MR imaging is sensitive to motion and TOF imaging is no exception.  
Both bulk patient motion and pulsatility can cause image artifacts.  Cardiac gating can 
significantly reduce artifacts due to cardiac pulsatility but increases scan time. 
 
Phase Contrast 
Whereas time-of-flight methods rely on effects related to the longitudinal magnetization, 
phase contrast methods utilize effects related to the transverse magnetization of excited 
spins.  Specifically, phase contrast angiography relies on the fact that spins moving 
through an applied gradient field accrue a different amount of phase than static spins.  
The phase of spins at echo time (TE) can be written as: 
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where M0 is the zeroth moment (area) of the applied gradient waveforms, M1 is the first 
moment, M2 is the second moment, v is the spin velocity, and a is the acceleration of the 
spin.  Higher order terms (acceleration and beyond) are typically ignored, leaving the 
simplified model of:   
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The basic idea of phase contrast is to design gradient waveforms to control M1 without 
affecting M0.  The typical approach is to insert a bipolar gradient waveform between the 
RF excitation and spatial encoding gradients.  A bipolar gradient waveform is composed 
of a positive-amplitude gradient lobe followed immediately by a negative-amplitude 
gradient lobe of equal area.  This waveform has zero net area, so M0 is unaffected but 
changing the amplitude and/or duration of the applied gradient lobes can control M1.  To 
sensitize the signal to flow in one direction, a typical experiment repeats each phase 
encode acquisition twice – once with a bipolar gradient with the first lobe having positive 
amplitude and once with a bipolar gradient with the first lobe having negative amplitude.  
The phases resulting from these two acquisitions are then subtracted and the result is 
proportional to the flow velocity and the first moment of the bipolar lobe utilized:  

12 Mvγφ =∆ , where γ is the gyromagnetic ratio.  The velocity encoding value or 



“VENC” is the velocity that produces a phase difference of 180°.  It is important to select 
VENC carefully.  Selecting too low of a VENC will result in velocity aliasing (a velocity 
higher than the selected VENC will appear to be a low velocity; caused by 180o to -180o 
“wrapping”).  Selecting too high of a VENC results in a reduction of SNR and vessels 
with slow flow may not be adequately visualized. 
 
Phase contrast methods can also be made sensitive to flow in all three directions.  In this 
case, each phase encode acquisition is repeated four times – once with a bipolar gradient 
on the x gradient, once with a bipolar gradient on the y gradient, once with a bipolar 
gradient on the z gradient, and finally a single reference acquisition is acquired.  The 
phase reference image is subtracted from each of the other acquisitions to correct for 
phase from sources other than flow.  A magnitude image depicting flow in any direction 
can be generated by taking the square root of the sum of the squares of each of the 
component images or each direction’s image can be examined separately.  The signal in 
the magnitude image is proportional to the magnitude of the velocity but directional 
information contained in the component images is lost. 
 
Phase contrast data can be acquired for a 2D slice or a 3D volume.  In addition, the 
acquisitions can be cardiac gated to allow for the measurement of velocity throughout the 
cardiac cycle. 
 
Relative to time-of-flight methods, phase contrast techniques have several advantages 
and disadvantages.  Phase contrast images typically have excellent suppression of static 
material.  In addition, flow of any velocity can be imaged given appropriate VENC 
selection.  Phase contrast methods can yield directional and/or quantitative velocity 
information.  Finally, these methods can be used for large field of view applications 
where saturation might be an issue for time-of-flight.  Unfortunately, the multiple 
acquisitions required for phase contrast increase the required scan time.  Also, the 
required bipolar gradients increase the minimum TE and can make the method more 
sensitive to off-resonance and flow-related artifacts. 
 
Contrast Enhanced Angiography 
Contrast-enhanced angiography relies on the venous injection of a gadolinium-based 
contrast agent that shortens the T1 of blood from its normal value of almost one second to 
approximately 30ms.  This very short T1 compared to other surrounding tissues (muscle 
T1~ 800ms, fat T1~250ms) combined with a short-TR sequence (TR~5ms) generates high 
contrast between doped blood and all surrounding tissues.  Unlike time-of-flight and 
phase contrast methods, contrast-enhanced angiography does not rely on blood flow in 
the volume of interest.  The angiographic contrast depends only on the arrival of the 
contrast agent to the vessels being imaged.  However, the timing of the contrast injection 
relative to imaging is critical. 
 
One of the primary challenges with contrast-enhanced angiographic techniques is how to 
preferentially image arteries rather than veins.  Most methods utilize a rapid 3D 
acquisition to acquire volumetric data.  The 3D acquisition is timed so that the center of 
k-space is acquired at the peak of the first-pass arterial enhancement, before venous 



enhancement.  The data at the center of k-space is the primary determinant of image 
contrast.  The edges of k-space contain higher spatial frequency information that depict 
vessel edges and other structures that change rapidly in space.  
 
Timing errors between injection and acquisition can result in a variety of image artifacts 
including edge enhancement and insufficient vessel filling.  The ideal timing and artifacts 
resulting from timing errors change with the order k-space is filled.  For example, in 
elliptical centric ordering, k-space is filled from the center moving outward.  Hence, an 
elliptically centric acquisition should be started later than an acquisition that moves from 
one edge of k-space to the other. 
 
There are a variety of approaches to sequence timing relative to the contrast bolus 
including using a test bolus, using “fluoro” triggering, or using a dynamic acquisition.  
The dynamic approach has been gaining popularity in recent years.  This method acquires 
multiple 3D volumes sequentially in time.  If these datasets are acquired quickly enough, 
it is very likely that one or several will have the desired peak arterial contrast. 
 
Compared to time-of-flight and phase contrast methods, contrast-enhanced techniques 
entail increased cost (for the contrast agent) and invasiveness. In exchange, these 
techniques generate high SNR angiograms with contrast that depends only on the arrival 
of the contrast agent.  In addition, the short TE used in the short TR acquisitions 
minimizes any flow-related artifacts. 
 
Reconstruction & Visualization 
The three-dimensional angiographic data generated by most MRA methods is typically 
visualized using a maximum intensity projection (MIP).  This non-linear processing 
technique displays the brightest signal intensity encountered at each pixel when passing a 
ray through the volume at a given projection angle.  MIPs can be calculated at many 
projection angles to allow more complete visualization of the anatomy. 
 
A technique known as “zero-filling interpolation” is often used in MRA.  This method 
reconstructs data using a larger image matrix than was actually acquired and fills 
unacquired data-points with zeroes.  For example, an image acquired with a matrix of 
512x512x32 might be reconstructed using a matrix of 1024x1024x64.  As the name 
suggests, zero-filling interpolation does not change the true resolution of the data but 
interpolates between known data points and can yield an image with a smoother and more 
pleasing appearance. Zero-filling is particularly important in the slice encoding direction 
when reformatting 3D data sets, reducing stair-step artifacts, and creating smooth 
transitions between slices. 
 
Coils and Parallel Imaging 
As in all types of MR imaging, it is important to select appropriate RF coils when 
acquiring angiographic data.  Coils that are local to the anatomy of interest have an 
inherent SNR advantage over a “body coil” acquisition.  In addition, phased-array coils 
offer potential for increased SNR and also can enable acceleration of acquisitions using 
parallel imaging approaches (e.g. SENSE, SMASH, GRAPPA, etc). 



 
Summary 
There are three major families of MR angiographic methods:  time-of-flight, phase-
contrast, contrast-enhanced.  All three methods are capable of generating high quality 
angiograms, however, each has advantages and disadvantages.  The optimal method 
depends on the specific application and setting. 
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